त्रिकोणमिति : महत्वपूर्ण सूत्र (IMPORTANT Formule)

💠 योग सूत्र 😀

🔹Sin(A + B) = SinACosB +
      CosASinB
🔺Sin(A - B) = SinACosB -
      CosASinB
🔹Cos(A + B) = CosACosB -
      SinASinB
🔺
Cos(A - B) = CosA.CosB +
      SinA.SinB

💠 अन्तर सूत्र 😀

🔹tan(A + B) = tanA + tanB/1 -
      tanA.tanB
🔺tan(A - B) = tanA - tanB/1 +
      tanA.tanB

💠 C - D सूत्र 😀

🔹SinC + SinD = 2Sin(C + D/2)
      Cos(C - D/2)
🔺SinC - SinD = 2Cos(C + D/2)
      Sin(C - D/2)
🔹CosC + CosD = 2Cos(C + D/
      2) Cos(C - D/2)
🔺CosC - CosD = 2Sin(C + D/2)
      Sin(D - C/2)
🔹CosC - CosD = - 2Sin(C + D/
      2) Sin(C - D/2)

💠
रूपांतरण सूत्र 😀

🔹2SinA.CosB = Sin(A + B) +
      Sin(A-B)
🔺2CosA.SinB = Sin(A + B) -
      Sin(A - B)
🔹2CosA.CosB = Cos(A + B) +
      Cos(A-B)
🔺2SinA.SinB = Cos(A - B) -
      Cos(A + B)

💠
द्विक कोण सूत्र 😀

🔹Sin2A = 2SinA.CosA
🔺Cos2A = Cos²A - Sin²A =
      2Cos² - 1 = 1 - 2Sin²A
🔹tan2A = 2tanA/1 - tan²A
🔺Sin2A = 2tanA/1 + tan²A
🔹Cos2A = 1 - tan²A/1 + tan²A

💠
विशिष्ट सूत्र 😀

🔹Sin(A + B) = Sin A . Cos B +
      Cos A . Sin B
🔺Sin(A - B) = Sin A . Cos B −
      Cos A . Sin B
🔹Cos (A + B) = Cos A . Cos B −
      Sin A . Sin B
🔺Cos ( A - B ) = Cos A . Cos B
      + Sin A . Sin B

💠 त्रिक कोण सूत्र 😀

🔹Sin3A = 3SinA - 4Sin³A
🔺Cos3A = 4Cos³A - 3CosA
🔹tan3A = 3tanA - tan³A/1 - 3tan²A

💠 महत्वपूर्ण सर्वसमिकाएं 🔹

🔹Sin²θ + Cos²θ = 1
🔺Sin²θ = 1 - Cos²θ
🔹Cos²θ = 1 - Sin²θ
🔺1 + tan²θ = Sec²θ
🔹Sec²θ - tan²θ = 1
🔺tan²θ = Sec²θ - 1
🔹1 + Cot²θ = Cosec²θ
🔺Cosec²θ - Cot²θ = 1
🔹Cot²θ = Cosec²θ - 1

Comments

Popular posts from this blog

Producers goods and consumer goods DIFFERENCES

Guidelines for effective conflict management